An equation of state applied to liquids

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1991 J. Phys.: Condens. Matter 34099
(http://iopscience.iop.org/0953-8984/3/22/019)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 10/05/2010 at 23:20

Please note that terms and conditions apply.

LETTER TO THE EDITOR

An equation of state applied to liquids

Mithlesh Kumari and Narsingh Dass
Physics Department, University of Roorkee, Roorkee 247667, India

Received 12 March 1991

Abstract

The equation of state previously suggested by the authors has been applied in the case of seventy-six liquids. The maximum and minimum pressure ranges used in the present study are $530-14040$ bars and $10-246$ bars, respectively. A very good agreement is found between the calculated and the experimental values of volume compression data in all the liquids studied here.

Recently, the authors [1-3] have developed the following equation of state

$$
\begin{align*}
n\left[V\left(P, T_{0}\right) / V\right. & \left.\left(P_{0}, T_{0}\right)\right]=-\left\{1 /\left[B_{T}\left(P_{0}, T_{0}\right) Z+B_{T}^{\prime}\left(P_{0}, T_{0}\right)\right]\right\} \\
& \left.\times \llbracket n\left\{1+\left[B_{T}^{\prime}\left(P_{0}, T_{0}\right) / B_{T}\left(P_{0}, T_{0}\right) Z\right]\left[1-\exp \left(-Z\left(P-P_{0}\right)\right)\right]\right\}\right] \\
& -Z\left(P-P_{0}\right) /\left[B_{r}\left(P_{0}, T_{0}\right) Z+B_{T}^{\prime}\left(P_{0}, T_{0}\right)\right] \tag{1}
\end{align*}
$$

where T_{0} is some reference temperature at which the calculations are being done. $B_{r}^{\prime}\left(P_{0}, T_{0}\right)$ is the first pressure derivative of the bulk modulus $B_{T}\left(P_{0}, T_{0}\right)$ at pressure P_{0}, and Z is a pressure independent parameter.

Equation (1) has been successfully applied in the cases of NaCl and CsCl solids in the pressure range $0-400 \mathrm{kbar}$ and the temperature range $298-1073 \mathrm{~K}$ [1], in fifty other solids up to a maximum pressure range of $0-4500 \mathrm{kbar}$ [2] and also in the case of plastics, rubbers, polymers and glasses up to a maximum pressure range of 0-100 kbar [3].

The aim of the present paper is to apply equation (1) in the case of liquids to check its validity and applicability in liquids, simply because so far no extensive theoretical work has been done in this area. Furthermore, values of $B_{T}\left(0, T_{0}\right)$ and $B_{T}^{\prime}\left(0, T_{0}\right)$ are not available in the literature for many liquids, and they are essential for the further development of work in this direction.

Therefore, with this aim in mind, (1) has been applied to the volume compression data, $V\left(P, T_{0}\right) / V\left(P_{0}, T_{0}\right)$, of seventy-six liquids. The values of the adjustable parameters $B_{T}\left(P_{0}, T_{0}\right), B_{T}^{\prime}\left(P_{0}, T_{0}\right)$ and Z are obtained by least squares fitting. However, we report the values of $B_{T}\left(0, T_{0}\right), B_{T}^{\prime}\left(0, T_{0}\right)$ and Z in table 1 by making use of the relations [1,2]
$B_{T}\left(P, T_{0}\right)=B_{T}\left(P_{0}, T_{0}\right)+\left[B_{T}^{\prime}\left(P_{0}, T_{0}\right) / Z\right]\left\{1-\exp \left[-Z\left(P-P_{0}\right)\right]\right\}$
and

$$
\begin{equation*}
B_{T}^{\prime}\left(P, T_{0}\right)=B_{T}^{\prime}\left(P_{0}, T_{0}\right) \exp \left[-Z\left(P-P_{0}\right)\right] \tag{3}
\end{equation*}
$$

In table 1, we also report: the reference temperature T_{0} in the case of individual liquids;
Table I. The values of $B_{T}\left(0, T_{0}\right), B_{T}^{\prime}\left(0, T_{\mathrm{n}}\right)$ and Z along with the root-mean-square deviation and reference temperature T_{n} in the case of liquids.

总	웅앙웅	$\underset{\substack{0 \\ \hline}}{\substack{0}}$	 														
	$\infty \text { 的前 }$																

Table 1 continued.

S number	Liquid	Pressure range (bar)	T_{0} (${ }^{\circ}$)	$\begin{aligned} & B_{7}\left(0, T_{11}\right) \\ & \text { (kbar) } \end{aligned}$	$B_{T}^{\prime}\left(0, T_{4}\right)$	$Z\left(\mathrm{kbar}^{-1} \times 10^{-3}\right)$	$\mathrm{RMSD} \times 10^{-4}$	Data source
61	Bromoform	0-3432	95	9.510	7.859	1.529	5.001	[7]
62	7-n-hexyltridecane	1.013-3400	135	5:979	10.460	117.699	0.421	[11]
63	9-n-octyIneptadecane	1.013-3400	98.89	8.808	10.287	82.399	1.464	[11]
64	11-n-decylheneicosane	1.013-3400	135	7.753	10.120	0.0	26.299	[11]
65	13-n-dodecylhexacosane	1.013-3400	135	8.414	9.492	15.400	5.587	[11]
66	1.1-diphenylethene	1.013-3400	98.89	12.994	9.167	0.0	13.436	[11]
67	1,1-diphenylheptane	1.013-3400	135	9.041	11.333	136.599	1.612	[11]
68	1,1-diphenyltetradecane	1.013-3400	135	9.344	10:923	107.099	1.691	[11]
69	$1,2,3,4,5,6,7,8,13,14,15,16$ dodecahydrochrysene	1.013-3400	135	14.874	10.703	58.399	1.329	[11]
70	Perhydrochrysene	1.013-3400	135	12.095	11.437	73.499	2.343	[11]
71	$\begin{aligned} & \text { 1,1-di(alpha-decalyl) } \\ & \text { hendecane } \end{aligned}$	1.013-3400 ${ }^{\circ}$	135	10.834	13.095	232.698	1.648	[1]]
72	1-3-5 trimethyl benzene	340-3270	25	9.807	16,688	504,610	2.563	[4]
73	O-xydene	290-3040.	25	14,948	10,488	0,0	8.940	[4]
74	N -hexyl alcohol	0-2452	0	13,929	11.039	0.0	6.777	[7]
75	Methane	89-313	-158.47	4.2643	10.6151	2219.332	20.325	[12]
76	Argon	10-246	-182.85	3.6469	24.330	6371.233	14.018	[12]

the pressure range used in the present study; and the root-mean-square deviation (RMSD) of the volume compression, $V\left(P, T_{0}\right) / V\left(P_{0}, T_{0}\right)$.

The following points from table 1 are worth noting.
(i) The maximum pressure range and the minimum pressure range used in the present study are 530-14040 bars and 10-246 bars, respectively.
(ii) The values of $B_{T}^{\prime}\left(0, T_{0}\right)$ are always greater than four for all the liquids studied here.
(iii) The value of RMSD obtained for volume compression data in the case of all the liquids suggests the success and usefulness of the present equation of state.

One of us (MK) is grateful to the University Grants Commission, New Delhi and to the Physics Department, University of Roorkee, for the award of Research Associateship.

References

[1] Kumari M and Dass N 1990 J. Phys.: Condens. Matter 23219
[2] Kumari M and Dass N 1990 J. Phys.: Condens. Matter 2 at press
[3] Dass N and Kumari M 1990 J. Phys.: Condens. Matter submitted
[4] Chen C C and Vedam K 1980 J. Chem. Phys. 734577
[5] Davis L A and Gordon R B 1967 J. Chem. Phys. 462650
[6] McKinney J E and Lindsay R 1972 American Institute of Physics Handbook 3rd edn (New York: McGraw Hill) pp 2-148
[7] Bridgman P W 1931 Proc. Am. Acad. Arts Sci, 66185
[8] Bridgman P W 1932 Proc. Am. Acad. Arts Sci, 671
[9] Cutler W G, McMickle R H, Webb W and Schiessler R W 1958 J. Chem. Phys. 29727
[10] Hogenboom D L, Webb W and Dixon J A 1967 J. Chem. Phys. 462586
[11] Lowitz D A, Spencer J W, Webb W and Schiessier R W 1959 J. Chem. Phys. 3073
[12] Itterbeck A V, Verbeke O and Staes K 1963 Physica 29742

